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Abstract. We say that a permutation π = π1π2 · · ·πn ∈ Sn has a peak at index i if
πi−1 < πi > πi+1. Let P(π) denote the set of indices where π has a peak. Given a
set S of positive integers, we define P(S; n) = {π ∈ Sn : P(π) = S}. In 2013 Billey,
Burdzy, and Sagan showed that for subsets of positive integers S and sufficiently large
n, |P(S; n)| = pS(n)2n−|S|−1 where pS(x) is a polynomial depending on S. They gave
a recursive formula for pS(x) involving an alternating sum, and they conjectured that
the coefficients of pS(x) expanded in a binomial coefficient basis centered at max(S)
are all nonnegative. In this paper we introduce a new recursive formula for |P(S; n)|
without alternating sums and we use this recursion to prove that their conjecture is
true.

Keywords: binomial coefficient, peaks, peak polynomial, permutation, positivity con-
jecture.

1 Introduction

Let [n] := {1, 2, . . . , n} and let Sn denote the symmetric group on n letters. Let π =
π1π2 · · ·πn denote the one-line notation for π ∈ Sn. We say that π has a peak at index i
if πi−1 < πi > πi+1 and define the peak set of a permutation π to be the set:

P(π) = {i ∈ [n] | π has a peak at i}.

Given a subset S ⊆ [n] we denote the set of all permutations with peak set S by

P(S; n) = {π ∈ Sn | P(π) = S}.
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Whenever P(S; n) 6= ∅, we say S ⊆ [n] is n-admissible or simply admissible when the n is
understood. If S is n-admissible, then it is k-admissible for any k ≥ n.

Billey, Burdzy, and Sagan first studied the subsets P(S; n) ⊆ Sn for n-admissible
sets S in 2013 [2]. Their work was motivated by a problem in probability theory which
explored the relationship between mass distribution on graphs and random permuta-
tions with specific peak sets [4]. One of their foundational results established that for an
n-admissible set S

|P(S; n)| = pS(n)2n−|S|−1 (1.1)

where pS(x) is a polynomial depending on S, which they called the peak polynomial of
S. It was shown that pS(x) has degree max(S) − 1 when S 6= ∅, pS(x) = 1 when
S = ∅, pS(x) = 0 when S is non-admissible, and that pS(x) takes on integral values
when evaluated at integers [2, Theorem 1]. Similar observations were made for peak
polynomials in other classical Coxeter groups (see the work of Castro-Velez, Diaz-Lopez,
Orellana, Pastrana, and Zevallos [9] and Diaz-Lopez, Harris, Insko, and Perez-Lavin
[11]). Using the method of finite differences, Billey, Burdzy, and Sagan gave closed
formulas for the peak polynomials pS(x) in various special cases. The finite forward
difference operator ∆ is a linear operator defined by (∆ f )(x) = f (x + 1)− f (x). Iterating
this operator gives higher order differences defined by

(∆j f )(x) = (∆j−1 f )(x + 1)− (∆j−1 f )(x),

where (∆0 f )(x) = f (x). Using Newton’s forward difference formula, Billey, Burdzy, and
Sagan expanded pS(x) in the binomial basis centered at k as

pS(x) =
max(S)

∑
j=0

(∆j pS)(k)
(

x− k
j

)
(1.2)

and conjectured that for any admissible set S with m = max(S) each coefficient (∆j pS)(m)
is a positive integer for 1 ≤ j ≤ m− 1 [2, Conjecture 14]. This conjecture has become
known as the positivity conjecture for peak polynomials.

Example 1.1. Below is a table of forward differences for the peak polynomial p{4,6}(x).
The (j, k) entry in this table is the coefficient (∆j pS)(k) of (x−k

j ) in the expansion of pS(x)
in the binomial basis centered at k.

For example, we expand p{4,6}(x) in the binomial bases centered at 0 and 6 as

p{4,6}(x) = 4
(

x
0

)
−2
(

x
1

)
+ 2
(

x
2

)
−2
(

x
3

)
+ 0
(

x
4

)
+ 3
(

x
5

)
+ 0
(

x
6

)
= 0

(
x− 6

0

)
+ 25

(
x− 6

1

)
+ 50

(
x− 6

2

)
+ 43

(
x− 6

3

)
+ 18

(
x− 6

4

)
+ 3
(

x− 6
5

)
+ 0
(

x− 6
6

)
.

Billey, Burdzy, and Sagan proved the positivity conjecture holds when |S| ≤ 1 [2,
Proposition 16], verified it computationally for all 2m subsets containing a largest value
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j, k 0 1 2 3 4 5 6
0 4 2 2 2 0 −3 0
1 −2 0 0 −2 −3 3 25
2 2 0 −2 −1 6 22 50
3 −2 −2 1 7 16 28 43
4 0 3 6 9 12 15 18
5 3 3 3 3 3 3 3
6 0 0 0 0 0 0 0

Table 1: Forward difference table for the peak polynomial p{4,6}(x)

m = max(S) = 20, and showed that pS(m) = 0 for any set S [2, Lemma 15]. In 2014,
Billey, Fahrbach, and Talmage posed a stronger conjecture bounding the moduli of the
roots of pS(x), which they checked numerically for all peak sets with max(S) ≤ 15 [3,
Conjecture 1.6]. They also discovered a computationally efficient recursive algorithm for
computing pS(x), and showed that pS(k) > 0 for k > m and that the positivity conjecture
holds in several special cases, including when the position of the last peak of S is three
more than the position of the penultimate peak [3, Lemmas 4.4 and 3.9].

Our main result is the following theorem, which proves the positivity conjecture in
all cases.

Theorem 1.2. If S ⊆ [n] is a nonempty admissible set with m = max(S), then (∆j pS)(k) > 0
for all 1 ≤ j ≤ m− 1 and k ≥ m, and (∆m pS)(x) = 0.

We prove Theorem 1.2 at the end of Section 2. As a consequence of this theorem
and (1.2), if S is an n-admissible set, then the coefficients {(∆j pS)(k)}m−1

j=1 of pS(x) when
expressed in the binomial basis centered at k are positive whenever k ≥ m. Positiv-
ity of coefficients in a given binomial basis is a phenomenon that occurs throughout
combinatorics. A particular illuminating example comes from Ehrhart theory. For a d-
dimensional integral convex polytope P, recall that iP(n) is the number of integer points
in the n-th dilation of P. Ehrhart proved that iP(n) is a polynomial in n of degree d,
so classical techniques in generating functions establish that iP(n) = ∑d

j=0 h∗j (
n+d−j

d ) for
complex values h∗j , see [5]. The vector (h∗0 , h∗1 , . . . , h∗d) is called the h∗-vector of P, and
a celebrated theorem of Stanley confirms that h∗j are nonnegative integers for all j, [14,
Theorem 2.1].

In addition to positivity, we have verified that the coefficients (∆j pS)(m) are log-
concave in j for all admissible sets S with m = max(S) ≤ 20, and we suspect that
log-concavity holds in general. We note that log-concavity along with our positivity
result would imply the unimodality of the coefficients (∆j pS)(m) for 1 ≤ j ≤ m− 1. If
unimodality is not true in general, a related problem would be classifying peak sets for
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which unimodality holds. Such problems are a major theme throughout combinatorics
(for instance, they are central in Ehrhart theory [5]) and could lead to many interesting
and fruitful combinatorial questions.

In addition, Theorem 1.2 provides supporting evidence for Billey, Fahrbach, and Tal-
mage’s stronger conjecture bounding the moduli of the zeros of peak polynomials [3,
Conjecture 1.6]. After stating that conjecture, they noted that Ehrhart, and Hilbert poly-
nomials are all examples of polynomials with integer coefficients (in some basis) whose
roots are bounded in the complex plane [1, 5, 6, 7, 8, 12, 13]. Their conjecture suggests
that peak polynomials fit into the family of polynomials sharing these properties.

2 Peak polynomial positivity

We begin with a definition that is used throughout the rest of this paper.

Definition 2.1. Let S = {i1, i2, . . . , is} ⊆ [n] with i1 < i2 < . . . < is be an n-admissible set,
and hence P(S; n) 6= ∅. For 1 ≤ ` ≤ s define

Si` = {i1, i2, . . . , i`−1, i` − 1, i`+1 − 1, i`+2 − 1, . . . , is − 1},
Ŝi` = {i1, i2, . . . , i`−1, î`, i`+1 − 1, i`+2 − 1, . . . , is − 1},

where the notation î` means that the element i` has been omitted from the set.

In general, the sets Si` might not be n-admissible as they may contain two adjacent
integers when i` − 1 = i`−1 + 1. However, the sets Ŝi` are always n-admissible.

Example 2.2. If S = {3, 5, 8} ⊆ [9], then

S3 = {2, 4, 7}, S5 = {3, 4, 7}, S8 = {3, 5, 7},
Ŝ3 = {4, 7}, Ŝ5 = {3, 7}, Ŝ8 = {3, 5}.

The sets S3, S8, Ŝ3, Ŝ5, Ŝ8 are 9-admissible whereas S5 is not.

Our first result describes a recursive construction of the set P(S; q + 1) from disjoint
subsets in Sq.

Theorem 2.3. Let S = {i1, i2, . . . , is} ⊆ [n] with i1 < i2 < . . . < is be a nonempty n-admissible
set. Then for q ≥ max(S)

|P(S; q + 1)| = 2|P(S; q)|+ 2
s

∑
`=1
|P(Si` ; q)|+

s

∑
`=1
|P(Ŝi` ; q)|. (2.1)
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Proof. We recursively build all permutations in P(S; q + 1) ⊆ Sq+1 from permutations in
Sq by inserting the number q + 1 (in different positions) in the permutations of Sq. Let
π = π1 · · ·πq be a permutation in Sq and consider the following five cases:
Case 1: If π ∈ P(S; q), then by inserting q + 1 after πq we create the permutation

π̂ = π1π2 · · ·πq(q + 1) ∈ P(S; q + 1).

Case 2: If π ∈ P(S; q), then by inserting q + 1 between πis−1 and πis we create the
permutation

π̂ = π1 · · ·πis−1(q + 1)πis · · ·πq ∈ P(S; q + 1).

Case 3: If π ∈ P(Si` ; q) for any 1 ≤ ` ≤ s, then by inserting q + 1 between πi`−1 and πi`
we create the permutation

π̂ = π1 · · ·πi`−1(q + 1)πi` · · ·πq ∈ P(S; q + 1).

Case 4.1: If π ∈ P(Si` ; q) and 1 < ` ≤ s, then π has a peak at position i`−1 and by
inserting q + 1 between πi`−1−1 and πi`−1 we create the permutation

π̂ = π1 · · ·πi`−1−1(q + 1)πi`−1 · · ·πq ∈ P(S; q + 1).

Case 4.2: If π ∈ P(Si1 ; q) where Si1 = {i1− 1, i2− 1, . . . , is− 1}, then by inserting q + 1 to
the left of π1 we create the permutation

π̂ = (q + 1)π1 · · ·πq ∈ P(S; q + 1).

Case 5: If π ∈ P(Ŝi` ; q) for any 1 ≤ ` ≤ s, then π has no peak at position i`. By inserting
q + 1 between πi`−1 and πi` we create the permutation

π̂ = π1 · · ·πi`−1(q + 1)πi` · · ·πq ∈ P(S; q + 1).

The permutations π̂ created via Cases 1 through 5 are distinct elements of P(S; q+ 1).
To see this note that if two permutations are the same, when you remove q+ 1 from each
they will stay the same, hence they will have the same peak set. Thus the only potential
collisions are between Cases 1 and 2, or between Cases 3 and 4. In both cases the
permutations in question are distinct because q + 1 appears in different positions.

In fact, we show that P(S; q + 1) is precisely the union of the permutations π̂ appear-
ing in Cases 1 through 5. If this is the case, the sets being disjoint gives us

|P(S; q + 1)| = 2|P(S; q)|+ 2
s

∑
`=1
|P(Si` ; q)|+

s

∑
`=1
|P(Ŝi` ; q)|.

Note that any permutation π̂ in P(S; q + 1) has the number q + 1 in one of the fol-
lowing positions: 1, i1, . . . , is, q + 1. If q + 1 is in position q + 1, then removing it from
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the permutation π̂ yields a permutation π in Case 1. If q + 1 is in the first position, then
removing it from the permutation π̂ yields a permutation π in Case 4.2. If q + 1 is in
position i` for some 1 ≤ ` ≤ s, then removing it from the permutation π̂ leads to three
possibilities: a permutation with a peak at position i` (Cases 2 and 4.1), a permutation
with a peak at position i`− 1 (Case 3), or a permutation without a peak at positions i`− 1
or i` (Case 5). Thus we have created all permutation in P(S; q + 1) via the constructions
in Cases 1-5.

Note that the recurrence provided in Theorem 2.3 also holds whenever S = ∅ as the
only contributing term is 2|P(∅; q)|. The following result plays a key role in the proof of
Theorem 1.2.

Corollary 2.4. Let S = {i1, i2, . . . , is} ⊆ [n] with i1 < i2 < . . . < is be a nonempty n-
admissible set. Then the following equality of polynomials holds

(∆pS)(x) =
s

∑
`=1

pSi`
(x) +

s

∑
`=1

pŜi`
(x). (2.2)

Proof. Let m = max(S). It suffices to show that the two polynomials agree at infinitely
many values, and to do so we show that for any q ≥ m,

(∆pS)(q) =
s

∑
`=1

pSi`
(q) +

s

∑
`=1

pŜi`
(q). (2.3)

Observe that for such q, substituting Equation (1.1) appropriately into Theorem 2.3 yields

2q−|S|pS(q + 1)− 2q−|S|pS(q) =
s

∑
`=1

2q−|Si`
|pSi`

(q) +
s

∑
`=1

2q−|Ŝi`
|−1pŜi`

(q)

= 2q−|S|
s

∑
`=1

pSi`
(q) + 2q−|S|

s

∑
`=1

pŜi`
(q) (2.4)

where the last equality holds since |Si` | = |S| and |Ŝi` | = |S| − 1 for all 1 ≤ ` ≤ s. The
result follows from multiplying Equation (2.4) by 1/2q−|S|.

We are now ready to prove the positivity conjecture for peak polynomials. We note
that the proof presented in this manuscript does not consider certain edge cases, however
we present a full detailed proof in the published version [10].

Proof of Theorem 1.2. We induct on m = max(S). The base case is when S = {2}. It is
known that p{2}(x) = x − 2 [2, Theorem 6]. Hence, we see (∆p{2})(x) = 1 > 0, and
(∆2p{2})(x) = 0. Now suppose S is an arbitrary non-empty admissible set satisfying the
conditions of the theorem, and further suppose the theorem holds for all peak polynomi-
als pT(x) with admissible set T satisfying max(T) < m. Let S = {i1, i2, . . . , is} ⊆ [n] with
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i1 < i2 < . . . < is, and for 1 ≤ ` ≤ s construct the sets Si` and Ŝi` . From Corollary 2.4, we
have

(∆pS)(x) =
s

∑
`=1

pSi`
(x) +

s

∑
`=1

pŜi`
(x).

For any 1 ≤ j ≤ m− 1,

(∆j pS)(x) = (∆j−1(∆pS))(x) =
s

∑
`=1

(∆j−1pSi`
)(x) +

s

∑
`=1

(∆j−1pŜi`
)(x), (2.5)

where (∆0pS)(x) = pS(x). Let k ≥ m. Since deg(pT(x)) = max(T)− 1 for any nonempty
admissible set T ⊆ [n] and deg(pT(x)) = 0 when T = ∅, we have that for all 1 ≤ ` ≤ s

deg(pS(x)) > deg(pŜi`
(x)) and deg(pS(x)) > deg(pSi`

(x)).

Since for all 1 ≤ ` ≤ s we have max(Si`) = m− 1 then by induction it follows that for
k ≥ m

(∆j−1pSi`
)(k) > 0 for 0 ≤ j− 1 ≤ m− 2.

If |S| ≥ 2 then for all 1 ≤ ` ≤ s we have max(Ŝi`) < m and by induction it follows that
for k ≥ m

(∆j−1pŜi`
)(k) > 0 for 0 ≤ j− 1 ≤ max(Ŝi`)− 1 and (∆j−1pŜi`

)(k) = 0 for j− 1 ≥ max(Ŝi`).

Finally, when S = {is} then Ŝis = ∅ and

(∆j−1pŜis
)(k) = (∆j−1p∅)(k) = 0 for j− 1 ≥ 1 and (∆0pŜis

)(k) = p∅(k) = 1.

From (2.5) we see that (∆j pS)(k) > 0. Finally, we claim that (∆m pS)(x) = 0. Since
deg(pS(x)) = m − 1 and the operator ∆ decreases the degree by one, we see that
(∆m−1pS)(x) = c is a positive constant and (∆m pS)(x) = 0.

With this conjecture proven in the affirmative we welcome a combinatorial descrip-
tion of the integers appearing in the peak polynomial binomial expansion.
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